Last updated: 2019-02-21

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20190214)

    The command set.seed(20190214) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 3ac72b2

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
    
    Unstaged changes:
        Deleted:    analysis/DE_L5_IT-PT.Rmd
        Modified:   code/Contrasts_rc.R
        Modified:   code/WP_codes.R
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    html 6fa2bc6 Yasin Kaymaz 2019-02-16 Build site.
    Rmd e4ef6cf Yasin Kaymaz 2019-02-16 Publishing contrast results
    html 99374a6 Yasin Kaymaz 2019-02-16 Build site.
    Rmd 0f4a96c Yasin Kaymaz 2019-02-16 second Commit to repo


Summary

Main Steps

Lake 2018 dataset

1. Obtain the data

#CerebellarHem data:
#wget ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE97nnn/GSE97930/suppl/GSE97930_CerebellarHem_snDrop-seq_UMI_Count_Matrix_08-01-2017.txt.gz
#unzip GSE97930_CerebellarHem_snDrop-seq_UMI_Count_Matrix_08-01-2017.txt.gz 

#FrontalCortex data:
#wget ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE97nnn/GSE97930/suppl/GSE97930_FrontalCortex_snDrop-seq_UMI_Count_Matrix_08-01-2017.txt.gz
#unzip GSE97930_FrontalCortex_snDrop-seq_UMI_Count_Matrix_08-01-2017.txt.gz 

#VisualCortex data:
#wget ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE97nnn/GSE97930/suppl/GSE97930_VisualCortex_snDrop-seq_UMI_Count_Matrix_08-01-2017.txt.gz
#unzip GSE97930_VisualCortex_snDrop-seq_UMI_Count_Matrix_08-01-2017.txt.gz  

After downloading the data, unzip the file of count matrix for further analysis.

3. I also filtered cells based on their expressed gene quantity.

  • Filter out cells expressing less than 500 genes (min.genes = 500, Seurat)

For the processing details, please follow Code

.

.

.

.

.

.

Session information

sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin17.5.0 (64-bit)
Running under: macOS  10.14.3

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libLAPACK.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.3.0   stringr_1.4.0   purrr_0.2.5     readr_1.1.1    
 [5] tidyr_0.8.1     tibble_2.0.1    tidyverse_1.2.1 dplyr_0.7.6    
 [9] Seurat_2.3.3    Matrix_1.2-14   cowplot_0.9.3   here_0.1       
[13] DT_0.4          plotly_4.8.0    ggplot2_3.1.0  

loaded via a namespace (and not attached):
  [1] diffusionMap_1.1-0   Rtsne_0.15           colorspace_1.4-0    
  [4] class_7.3-14         modeltools_0.2-22    ggridges_0.5.0      
  [7] mclust_5.4.1         rprojroot_1.3-2      htmlTable_1.12      
 [10] base64enc_0.1-3      rstudioapi_0.8       proxy_0.4-22        
 [13] flexmix_2.3-14       bit64_0.9-7          lubridate_1.7.4     
 [16] mvtnorm_1.0-8        xml2_1.2.0           codetools_0.2-15    
 [19] splines_3.5.0        R.methodsS3_1.7.1    robustbase_0.93-1   
 [22] knitr_1.20           Formula_1.2-3        jsonlite_1.6        
 [25] workflowr_1.1.1      broom_0.5.0          ica_1.0-2           
 [28] cluster_2.0.7-1      kernlab_0.9-26       png_0.1-7           
 [31] R.oo_1.22.0          compiler_3.5.0       httr_1.3.1          
 [34] backports_1.1.2      assertthat_0.2.0     lazyeval_0.2.1      
 [37] cli_1.0.1            lars_1.2             acepack_1.4.1       
 [40] htmltools_0.3.6      tools_3.5.0          bindrcpp_0.2.2      
 [43] igraph_1.2.1         gtable_0.2.0         glue_1.3.0          
 [46] reshape2_1.4.3       RANN_2.6             Rcpp_1.0.0          
 [49] cellranger_1.1.0     trimcluster_0.1-2    gdata_2.18.0        
 [52] ape_5.1              nlme_3.1-137         iterators_1.0.10    
 [55] fpc_2.1-11           lmtest_0.9-36        rvest_0.3.2         
 [58] irlba_2.3.2          gtools_3.8.1         DEoptimR_1.0-8      
 [61] zoo_1.8-3            MASS_7.3-50          scales_1.0.0        
 [64] hms_0.4.2            doSNOW_1.0.16        parallel_3.5.0      
 [67] RColorBrewer_1.1-2   yaml_2.2.0           reticulate_1.9      
 [70] pbapply_1.3-4        gridExtra_2.3        segmented_0.5-3.0   
 [73] rpart_4.1-13         latticeExtra_0.6-28  stringi_1.2.4       
 [76] foreach_1.4.4        checkmate_1.8.5      caTools_1.17.1      
 [79] SDMTools_1.1-221     rlang_0.3.1          pkgconfig_2.0.2     
 [82] dtw_1.20-1           prabclus_2.2-6       bitops_1.0-6        
 [85] evaluate_0.10.1      lattice_0.20-35      ROCR_1.0-7          
 [88] bindr_0.1.1          htmlwidgets_1.2      bit_1.1-14          
 [91] tidyselect_0.2.4     plyr_1.8.4           magrittr_1.5        
 [94] R6_2.3.0             snow_0.4-3           gplots_3.0.1        
 [97] Hmisc_4.1-1          haven_1.1.2          pillar_1.3.1        
[100] whisker_0.3-2        foreign_0.8-70       withr_2.1.2         
[103] mixtools_1.1.0       fitdistrplus_1.0-9   survival_2.42-6     
[106] scatterplot3d_0.3-41 nnet_7.3-12          tsne_0.1-3          
[109] modelr_0.1.2         crayon_1.3.4         hdf5r_1.0.1         
[112] KernSmooth_2.23-15   rmarkdown_1.10       readxl_1.1.0        
[115] grid_3.5.0           data.table_1.11.4    git2r_0.23.0        
[118] metap_0.9            digest_0.6.18        diptest_0.75-7      
[121] R.utils_2.6.0        stats4_3.5.0         munsell_0.5.0       
[124] viridisLite_0.3.0   

This reproducible R Markdown analysis was created with workflowr 1.1.1